

Software Acquisition

TASK DELIVERABLE:

Final Report

Submitted By: Charles Coleman
Manager, SATC

December 2003

Technical POC: Al Gallo Administrative POC: Dennis Brennan

Phone #: 301-286-3756 Phone #: 301-286-6582

Fax #: 301-286-1667 Fax #: 301-286-1667

Email: al.gallo@gsfc.nasa.gov Email: Dennis.Brennan.1@gsfc.nasa.gov
Mail Code: 304 Mail Code: 300.0

mailto:Richard.M.Day.1@gsfc.nasa.gov
mailto:Dennis.Brennan.1@gsfc.nasa.gov

2

Table of Contents

1 The problem.. 3

1.1 Acquiring software via contract rather than develop software in-house 3

1.2 Performance-Based Contracts... 4

1.3 Use of software to provide critical system functions.. 4

2 Research Objective ... 4

3 Research Approach ... 5

4 Research Results ... 6

4.1 Essential Items of Information Framework .. 6

4.2 Methods/Tools for Requirement Clarity and Precision... 8

4.2.1 Overview... 9

4.2.2 Modeling... 9

4.2.3 Tools ... 10

4.3 SA-CMM Critical Success Factors... 11

5 Future Directions .. 12

3

1 The problem
Obtaining useful software is a long-standing problem in both the public and private
sectors. Despite the considerable attention and resources directed toward this problem,
the fact remains that only a small percentage of software development projects produce
software that is put into productive use.

Three factors combine to exacerbate this problem within the NASA community. The
first factor is the ever-increasing trend to acquire software via contract rather than
develop that software in-house. The second factor is the move towards performance
based contracts and other acquisition vehicles that focus the Agency’s attention on the
requirements for the software product being acquired while leaving it up to the contractor
to determine how those requirements are to be met. The third factor is the increasing use
of software to provide critical system functions.

1.1 Acquiring software via contract rather than develop software in-house
Acquiring software from an external source places several barriers between those that
need the software and those that build the software. Each barrier (e.g., organizational,
cultural, technical, economic, distance) increases the risks that the software delivered will
not meet the needs and expectations of prospective users.

Risk management (risk identification, assessment, and mitigation) is an important method
for assuring that contractually acquired software will meet delivery, performance, and
quality requirements. This risk – based approach requires the availability of critical items
of information to objectively determine the status of deliverable products and to identify
trends that may impact the availability and utility of those products. What is needed is
the identification of the information critical for managing the technical risks associated
with acquiring software from an external source

Identifying and getting relevant data is just part of the solution to managing the risks
associated with contractually acquired software. The real challenge is in using the data to
objectively gain insight on probable risks and provide the appropriate level of oversight
for the software acquisition. At any given time, the contractor may provide a large
number of information items to the acquirer. Each information item provides a measure
relevant for assessing some aspect of software development risk. Looking at each
information item in isolation is not likely to be useful. What is needed is some way of
analyzing the data and presenting the results of that analysis in a form that clearly
communicates the areas and degree of the risks.

4

1.2 Performance-Based Contracts
One of the key aspects of performance-based contracts involves strict separation of what
work is to be done from how that work is to be performed. The acquirer specifies the
requirements (what) while leaving it up to the contractor to determine how those
requirements are to be met.

Relying on requirement specifications as the sole means of communicating the salient
attributes desired of a software product is as much a problem today as it has always been.
Although developing high quality requirement specifications is not sufficient to insure
software quality, developing high quality requirement specifications is an important first
step towards achieving software quality.

Current methods and tools for developing high quality requirement specifications
typically requires as much effort by the acquirer to specify what is to be done, as it does
for the developer to actually do the work. What is needed is a method, supported by
automated tools, that achieves a better balance between developing the requirements and
implementing the requirements.

1.3 Use of software to provide critical system functions
The increase in technical complexity of NASA missions can be attributed, in large part
to, to the increasing use of software to provide critical system functions. NASA projects
have ultimate responsibility for the safety and assurance of the mission in spite of the fact
that a contact and contractors may be involved. Assuring that software, which provides
critical system functions, performs as required is challenging in its own right. The fact
that a contract and contractors are involved significantly complicates the task. What is
needed is a method to improve the process by which NASA acquires critical system
software.

2 Research Objective
The problems associated with the three factors described above are not going away. In
fact, budget and other pressures are likely to make those problems more difficult to deal
with in the future than they are today.

The objective of the research is to identify methods and tools that NASA projects can use
to mitigate some of the adverse effects of the problem of acquiring software from
external sources. Underlying this objective is the hypothesis that there are viable

5

methods/tools that can enable NASA project managers to mitigate a significant number of
the major risks associated with acquiring software from external sources.

It is important to note that our focus is on acquiring software via contract as opposed to
acquiring software from contractors. In many NASA environments, support contactors
are indistinguishable from NASA staff. In these environments, there is typically not a
contract-imposed risk beyond those risks usually associated with a software development
activity.

3 Research Approach
We set out to explore three broad classes of methods/tools.

The first class focused on methods/tools that provide NASA projects with improved
insight and oversight into the contractor’s activities. Key to gaining and effectively using
this insight/oversight is identifying the essential items of information that NASA projects
should obtain from the contractor (e.g., problem reports). Rather than just identifying a
laundry list of data items, we wanted to establish a framework that provides a logical
structure and context for the data items. Much of our effort went into defining this
structural and contextual framework.

The second class dealt with methods/tools that help NASA projects improve the quality
of requirement specifications. Our original thoughts were to explore the use of UML1 to
increase the clarity and precision of requirement specifications, and to find important and
subtle errors. During the course of our research it became evident that requirement
clarity and precision was a much broader problem than just the use of a particular
modeling language. After identifying a technology that shows promise as an approach to
the broader problem, we did not further pursue this element of the research.

The third class involved methods/tools that help projects objectively assess, and thus
improve, their software acquisition capability. Of particular interest and potential
applicability is the Software Acquisition Capability Maturity Model (SA-CMM)2. Much

1 The Unified Modeling Language™ (UML); http://www.rational.com/uml/index.jsp?SMSESSION=NO
2 Jack Ferguson, et all, “Software Acquisition Capability Maturity Model (SA-CMM) Version 1.01”;
Technical Report CMU/SEI-96-TR-020; December 1996

6

of our effort went into identifying critical factors underlying the successful use of SA-
CMM.

4 Research Results
4.1 Essential Items of Information Framework
Our research identified six common areas of software development risks. Each of these
risk areas is characterized by one or more factors associated with the development
processes and/or software products. The factors that characterize each risk area are
defined by one or more measures. This relationship between risks, factors contributing to
those risks, and measures for assessing those factors form the framework for identifying
the essential items of information needed to objectively assess and manage risks
associated with software development. This framework is similar to the Goal, Question,
Metric3 paradigm developed by Basili and Weiss.

Two points regarding our criteria for selecting the areas of software development risks.
First of all, the areas were deemed to be relevant to the NASA experience. Secondly, the
areas relate specifically to acquiring software from an external source

The six common areas of software development risks are:

1. Schedule/Progress 4. Product Quality

2. Development Resources 5. Development Performance

3. Product Growth and Stability 6. Technical Adequacy

Measures for each factor of each risk area are identified and quantified by specific items
of information or data acquired from sources that must be included in the contract's list of
deliverables. The table below illustrates the use of the framework. Here, an area of risk
(Schedule/Progress) is shown with one of the factors (Milestone Performance) associated
with that area of risk along with the information used to assess that factor.

3 Basili, V. R. and Weiss D. M. "A Methodology for Collecting Valid Software Engineering Data." IEEE
Transactions on Software Engineering, 10(6), 1984, 728-738.

7

Risk Area Risk Factor Risk Measures
Schedule/Progress

{Progress against
an established
development and
delivery schedule}

Milestone Performance

{Monitoring changes to the
milestone schedule enables the
project manager to assess the
potential risk that scheduled
future project milestone may not
be achieved}

Names Of Planned Activities &
Events

Dependencies Between
Activities/Events

Scheduled Milestone Event Dates

Dates That Milestone Events
Actually Occur

Number Of Times Each Event Has
Been Rescheduled

1. Name/ID# Of Design
Components

2. Scheduled Start Date Of Each
Component

3. Actual Start Date Of Each
Component

4. Scheduled Completion Date Of
Each Component

5. Actual Completion Date Of Each
Component

The complete list of risk areas, associated factors, and information items are presented in
Task Deliverable: Essential Items Of Information That NASA Projects Should Obtain
From The Contractor March 31, 2003.

In conjunction with the essential items of information framework, we also developed a
framework for

• identifying the functionality of a toolset for analyzing the essential items of
information, and

• presenting the results of that analysis in a form that clearly communicates the areas
and degree of the risks.

8

The requisite functionality involves a multivariate analysis of the risk measures to arrive
at an overall assessment of the software development risk. A description of the
multivariate analysis is presented in Task Deliverable: Analysis of the Essential Items of
Information That NASA Projects Should Obtain From The Contractor June 30, 2003.

Regarding the two frameworks; it is useful to note that;

• for a given environment, there may be other areas of software development risk that
are deemed more important that the ones identified here. The value of the essential
items of information framework is that it can be adapted to any set of software
development risks

• there is nothing magical about six areas of risks. The framework for identifying the
functionality of a toolset for assessing the essential items of information can be
adapted to fit the particular number of risk areas relevant for a given environment.

4.2 Methods/Tools for Requirement Clarity and Precision
As stated earlier, our original thoughts were to explore the use of UML to increase the
clarity and precision of requirement specifications, and to find important and subtle
errors. During the course of our research it became evident that requirements clarity and
precision was a much broader problem than just the use of a particular modeling
language. In trying to understand the broader problem we identified two key issues:

• modeling,

• methods/tools for deriving useful information from the models.

9

In our attempts to more precisely relate these issues to the problem of requirements clarity
and precision, we came across a technology known as 0014. 001 has a large number of
interesting features applicable to the all phases of software development lifecycle. We,
however, limited our focus on those features that

• relate directly to issues of requirements clarity and precision

• are important in an environment where the software is acquired from an external
source.

4.2.1 Overview
001 is a collection of concepts, methods, and tools ostensibly developed to automate the
paradigm, Development Before the Fact (DBTF). There is a language, 001 AXES, which
supports the representation of DBTF and a set of tools, the 001 Tool Suite, which
supports the application and use of DBTF.

The chief claim of DBTF is that it is a preventive paradigm, that is, problems associated
with traditional methods of design and development are prevented "before the fact" just
by the way a system is defined. This is contrast to the traditional curative paradigm that
focuses on finding and fixing problems after they've surfaced -- often at the most
inopportune and expensive point in time.

The benefits of 001 derive primarily from the models that are created using the 001
AXES language. After a model is defined, the 001 Tool Suite can be used to analyze the
modeled system and to automate functions such as code generation and documentation.
Although not yet implemented, the 001 team has designed a reverse engineering tool that
can be used to document, understand, and eventually bring legacy code under the 001
umbrella.

4.2.2 Modeling
Modeling boils down to the questions of fidelity, scalability and the underlying systems
theory upon which the modeling concepts are based.

4 Margaret H. Hamilton and William R. Hackler, “Towards Cost Effective and Timely End-to End
Testing”, prepared for Army Research Laboratory, Georgia Tech.; Contract No. DAKF11-99-P-1236; July
17, 2000

10

With respect to fidelity, 001 models are built using system-oriented objects (SOOs).
SOOs are imbued with all of the detail that allows it to be understood without ambiguity
by all other objects within the model. 001 comes with a standard set of low-level SOOs.
Higher-level SOOs can be constructed from lower-level SOOs.

Questions regarding scalability become issues of complexity. Small demo systems are
clearly easier to model than are large heterogeneous, geographically distributed, real-
time, system. It’s not clear how the 001 AXES language assists in dealing with issues of
complexity. In addition, we are not aware of an application in which the 001 AXES
language has been used to model large heterogeneous, geographically distributed, real-
time, systems.

The underlying systems theory upon which the modeling concepts are based appear to
have evolved in whole cloth from the extensive experience of Margaret Hamilton in
building and analyzing systems. UML, by way of contrast, has its roots in the
internationally developed Open Distributed Processing5 systems model. The 001 team,
however, is intimately familiar with UML and has done extensive comparisons
highlighting similarities and differences. 001 did not suffer in those comparisons.

4.2.3 Tools
Tools boil down to the scope of functionality embodied in the tool, ease of use, and the
degree of coupling between the tool functionality and the underlying systems theory.

The 001 tool suite appears to cover the full spectrum of life cycle functions, including:
requirements and design modeling; automatic code generation; test and execution; and
simulation. In addition, 001 can be used to coexist and interface with other tools

With respect to ease of use, the 001 team claims that the tool suite is no more difficult to
use than other comprehensive tool suites. In fact, they have documented comparisons
that suggest that the 001 tool suite functions are easier to use than corresponding
functions in systems such as UML. Its one thing to measure ease of use within a

5 Jan de Meer, Bernd Mahr, Silke Storp (Eds.): Open Distributed Processing, II: Proceedings of the IFIP
TC6/WG6.1 International Conference on Open Distributed Processing, Berlin, Germany, 13-16 September
1993. IFIP Transactions C-20 North-Holland 1994, ISBN 0-444-81861-8

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Meer:Jan_de.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mahr:Bernd.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Storp:Silke.html
http://www.informatik.uni-trier.de/~ley/db/series/ifip/transactions.html

11

population of users comfortable with abstractions and modeling – its quite another to
measure ease of use within a population of system development practitioners.

There is a very tight coupling between the 001 tool suite functionality and systems theory
underlying DBTF. For example Fmaps and Tmaps are key systems theory artifacts that
are tightly coupled to 001 tool suite functionality. This tight coupling is a two-edged
sword – on the one hand it facilitates use of the tool suite by users steeped in the
underlying systems theory; on the other hand it can be a significant barrier to the use of
the tool suite by users unfamiliar with the underlying systems theory.

4.3 SA-CMM Critical Success Factors
The experience of the Software Engineering Institute in developing the Capability
Maturity Model for Software (SW-CMM) was directly applicable to developing the SA-
CMM. The SW-CMM describes the contractor’s role while the SA-CMM describes the
acquirer’s role in the software acquisition process. The SA-CMM identifies key process
areas for four of its five levels of maturity. The key process areas state the goals that
must be satisfied to achieve each level of maturity. The SA-CMM is designed to be
generic enough for use by any government or industry organization, regardless of size,
acquiring software. When applying the SA-CMM to a particular organization,
translations may need to be made in addition to tailoring the model to fit a specific
acquisition.

Our research identified the following factors that are critical to the successful application
of SA-CMM.
• Visible, high-level management commitment to improve the acquisition of software

intensive systems

• A centrally coordinated/supported acquisition function to serve as the repository of
SA-CMM experience and expertise

• Access to SEI expertise to assist in training and transition to the use of SA-CMM

• Sufficient staffing and funding for a well-defined, well coordinated SA-CMM effort
(no real rule of thumb yet established)

• A convincing ROI value proposition and/or recognition that the organization has a
problem that can be addressed by SA-CMM

12

Further, we found that the SA-CMM can be viewed from two complementary
perspectives: (1) a formal methodology that can provide measures of an organization’s
software acquisition capability, and (2) a set of practices and procedures that can be
undertaken to improve the acquisition of software intensive systems. While both
perspectives are important to achieve the full benefit from implementation of SA-CMM,
we found that most of the resource – intensive requirements stem from it’s use as a
formal assessment methodology, while most of the benefits accrue from disciplined
application it’s of practices and procedures

5 Future Directions
The Agency is currently emphasizing performance based contracting and the use of
metrics to manage and assess contract performance. A large amount of guidance material
is available for formulating software statements of work (SOW) and the selection of
software development metrics. Applying this guidance, however, poses a formidable
challenge because of the disparate, fragmented, and nonintegrated nature of the
information, and also because of the lack of tools to facilitate incorporating this guidance
into routine project practice.

The results of this research, along with previous SATC research can be adapted and
extended to create an integrated, non-intrusive methodology and toolset to aid projects in
software acquisition and performance assessment. Throughout the development process,
the toolset could analyze contractor delivered data to identify trends and potential
problems in the most common areas of development and product risk.

This new work can also provide the basis for efforts to collect, catalog and maintain data
produced by the toolset into a repository. This repository could serve as a resource for
project planners, reviewers, and quality assurance staff to anticipate project risks based
upon the similarity between a particular project profile and other profiles developed via
the tool. In addition, the repository could serve as a valuable learning tool for teams
being assembled for new projects and as a novel way for collecting/disseminating lessons
learned.

The results of this research will be applicable to all NASA projects that acquire or
develop software capabilities. The resources and tool resulting from this activity will
provide assistance to project personnel involved in the acquisition of mission software.

13

Potential users and uses are shown in the table below.

Users Uses

Project managers Identification of software acquisition priorities

Tracking/monitoring software schedule and
resources.

Assessment of software progress.

.Revision of software priorities

Project Software Manager Development of software SOW and required
deliverable items list.

Assessment of software product risks

Tracking/monitoring software progress

Identification of development trends

Project Performance
Assurance Managers

Development of software SOW assurance
requirements

Tracking/monitoring software quality activities

Assessment of software reliability trends

Software COTR Development of software technical guidance

	The problem
	Acquiring software via contract rather than develop software in-house
	Performance-Based Contracts
	Use of software to provide critical system functions

	Research Objective
	Research Approach
	Research Results
	Essential Items of Information Framework
	Methods/Tools for Requirement Clarity and Precision
	Overview
	Modeling
	Tools

	SA-CMM Critical Success Factors

	Future Directions

